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Abstract. The problem of testing a linear temporal logic (LTL) for-

nmla on a finite execution tr'aco of events, genorate, l by an executing

program, occurs naturally in runtime analysis of software. We present

an algorithm which takes an LTL formula and generates an efficient dy-

namic programnfing algorithm. The generateda!gorithm tests whether

the LTL formula is satisfied by a finite trace of events given a.s input. The

generated algorithm rnns in linear time. its constant ,lepending on the

_ize of the LTL fi_rnmla. The memory nreded is constant, also depending
ou the size of the fi_rmula.

1 Introduction

The work presented in this paper is part of an ambitious project at NASA Ames

Research Center, calh,d PATttExPLORER, that aims at ,leveloping a practical

testing environment for NASA software developers. The basic idea of the project

is to extract an execution trace of a concurrent program anti then analyze it to

detect errors. The errors we are considering at this stage are deadlocks, data

races, and non-conformance with linear temporal logic specifications. Only the

later issue is addressed in this paper.

Linear Temporal Logic (LTL) [17] is a logic for specifying properties of re-

active and concurrent systems. The models of LTL are infinite execution traces,

reflecting the behavior of such systems as ideally always being ready to respond

to requests, operating systems being a typical example. LTL has been mainly

used to specie" properties of concurrent and interactive down-scaled models of

real systems, so that. flflly formal correctness proofs could subsequently be car-

ried out, for example using theorem provers or model checkers (see for example

[12, 9]). However, such formal proof techniques are usually not scalable to real

sized systems without a substantial effort to abstract the system more or less

manually to a nmdel which can be analyzed. Model checking of programs has

received an incre_ed attention from the formal methods community within the

last couple of years, and several systems have emerged that can directly model
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ch,,ck .,,urea, r_,,I,., such a._.Iava :m,I (' [10. :21. I. I 1.:l;. [_;l Stat,,I,.ss m,_,l,,I ,'t.'ck-
I_I'N I_()I tl'V h) ;u,.roi,ltilt' ;d,.'.tra,'tiqm l,r.,'e.'.._ I,v m,t _.tori g _rat,'_..\lib,)ugh

th,.s. _w.rrms pr_,vi&, high ,'..li,I,'ucr. they sraI. h'ss w.ll h,,caus,, m_,st (,f their

mt,,rn:d algorithms ar,, .NP-coml,l,,t. ,n wors_,.

T,,stir g sral,,s wdl, ;m,l is by t'a," tl,, m._.t us_'d t-chni,lUe in I)r;.'tict' to

v:di.t:,/,, -_(,ftwar. s;xt,qns. Tit,' tt.'rl__p .ff trsting alt, t t.,up(Jra[ _gic sp.cification
is all art,.lnpt teJ achi..v, the hent.lits of both al)proach,,s, while avoi.ling scm,, of

the pitfalls (if ;ulho,. resting and the con,plpxity _,f fuil-t,lown th.,orr,nl prm'ing

an,[ u,,,1.q checking. ()f tout's,, rlu.r,, is a pri,'r to pay in o,',le." to ol_rain a

srahtl,I.' technique: the loss of ,'ov,'rage. Tht' sugg,_sted framework can only be
use, l to _'xamilte single execution traces, and can therefore not be used to prove

a system correct. Our work is based on the belief that software engineers are
willing to trade coverage for scalability, so our goal is to provide tools that are

completely a, tomatic, implement very efficient algorithms and find many #trots

in programs. As mentioned previously, the work presented in this paper is part
of largf, r effort to develop a set of ,lynamic :malysis algorithms and to intpgrate
these into a single tool named PATHExPLORER. Of particular additional interest

are for example algorithms that can detect deadlock and data race potentials in

a program, by examining a single arbitrary execution trace of the program, even
rho,tgh these errors (h; not occur in that trace. This can be achieved by analyzing
the way locks are ac(luired and re.leased. A dea, tlock potential can for example

be ,l,.tecte,1 by observing that two th,'oa,ls take two locks in differeut order.

.k collection uf commercial tools alr_'ady provi,le this kind of analysis: Visual
Threads [7]. which uses the Eraser algorithm [1S] for detecting data races, and
which works on C and C++ proN'ams using Pthreads: Assure [1]. which works on

C'++ programs using Pthreads" and finally Jprobe [t9] for Java. In earlier work.
we inlplemented data race detection an,l deadlock detection algorithms for Java

in .I.v,.,, P.vri_FixDEa [8_. It's our intention to extend this kind of technology by
identifying other error patterns that can be detected this way. A major goal is to
make P.VFtlEXPLORER adjustable to various programming lan_mges and thus

eveutually deliver a J.,,vA PATtlExPLORER as well as a C++ PATItEXPLORER

that share the same core algorithms but have different front ends. A longer term

goal is to explore the use of conformance with a formal specificatio,| to achieve
fault tolerance. The idea is that the failure may trigger a recovery action in the
monitored program.

Following encouraging results using rewriting-b_ed algorithms [11] imple-
mented in Maude [2]. in this paper we investigate more etficient algorithms for
testing whether finite execution traces conform to LTL formulae. The idea of

using LTL in program testing is not new. It has already been pursued in com-
mercial tools such as TempRover (TR) [5], which has athnittedly motiwtted us
in a major way to start this work. In TR, one states LTE properties as anno-

tations of the program, these being then replaced by appropriate code, that is
executed whenever reached t. Thus, TR ca_ be seen as an extension of a conven-

tional programming language with LTL instructions. Inspired by the MaC [15]

1 The implementation details of TR are not public.



t,,,i, w,. ,h'chh._l t,_ rarh,,r ;mI_,matic:dh" in_rrmm,nr If,0. l_.vr0.c,,d,. -r th,, ,,l,j,.ct

,"_>_b' _,f ;t [:,r_gr:tlll I_ __'[wr;d',' ,'v,'i¢_ _JI" hltor,,st qhlrhlg, t]t,.._,xc,cTtIi4,n.._,ich ;1'Ii

,,v4,nr-I,:ks,,d fram,,wm'k is w,,ll _,ail,',l for I_rogram rr:wiu_ in :._,,n,,ral. and has

:d'., b,.,,n us_,d to ,I,,r,,ct ra,'_, c.n,liti_m_ and d,,a, lh,,'ks hi rh,, Visual Thr,'ads

!7. tS] an, I .lava P:tthFin, h,r IS] t,,,,Is. Th,, It-a,'<, (,f ,,;,,urs ,':m rh,.n I,,, anatyze, l

1[sin_ a ,lilf_,r,.nt t_J_JI whi<'h can ,.v_,n rllll c)Ii ;1,<lifft,ront id;_rfi_t-nt+ ()tw can also

:4;I."o V,'lri()llS _'xq'cllrh:,n tt';|('_'5 of ;t pr()g,r;un ;IZl(] [hi.Hi [|;/v$ _ :..;i)Illl,()llf, ,Pl. ",,_" alla]yz6 _

tht'm at ;t ,litfi,r_,nt tim(,, ia a ,tiff,'r4'nt place,. W_' ,.yore tlm_ r:widly f;u'_'d with

th,. fi_ll,_wing ch;dl_,ngy:

Given a finite execution trace t of events and an LTL formula ,:, how effi-

ciently can one test whether t satisfies _,p,,

A potenti_d solution wouhl be to translate the formula into an automaton and

then take the synchronized product of the automaton and the execution trace.

This is for example how Biichi automata are used in explicit-state model checkers

for representing formulae [13.6]. A Bib'hi automaton is a special automaton

which accepts infinite traces (words): certain states are designated &_, acceptance

states, and an infinite trace is in the language of the automaton if and onh" if

it brings the automaton through an acceptance state infiniteh" often. A model

check_,r can detect such infinite traces by hashing states and detect cycles that

illC]ll,[O ac('e[)tanc_? stilres, l,_b have decid,',l riot to use Biichi automata for a

llUnlbor of reasons.

First. the translation of LTI'_ fornmlae to Biichi automata is not trivial,

especially if one strives for small automata. It is worth mentioning that

other similar systems like Temporal Rover [:3] and MaC [15] do not use
Biichi atttonmta oirh_,r.

Second, at a semantic level. BiMfi automata are interprc_t_,d over infinite

traces and it is not clear how to interpret them on finite traces. Consider for

example a property such as I2(p --+ Oq). the automaton .4. generated from

the formula, and a finite trace t that, according to the semantics, satisfies the

formula. The naive suggestion would be to drive the automaton .4 by t until

the end of the trace, and then observe whether the automaton is in an ac-

ceptance state or not. This will, however, generally not work. In experiments

made using the LTL-to-Biichi automata translator in the SPIN system [13],
such a trace may bring the automaton to a state that is not an acceptance

state. Hence, one can generally not conclude anything from the resulting

state. A potential solution would be to pretend that an infinite sequence of

stuttering transitions is appended to the trace, where a stuttering transition

does not satisfy any proposition. One could then exanfine whether such a

stuttering sequence woukl bring the antonmton front the state(s) resulting

from the finite trace, through an acceptance state infinitely often. Hence, the

stuttering shouhl be shown to "finish off" the automaton correctly. However,

even though such an interpretation is possible, a different issue is that our

finite trace semantics of the always operator _ is different from the infinite

trace sem_mties implied by Biichi automata.



[liir_l, w_' thilik thai the' _lvnaliiic l_r_14r,uniiiili7, lii_,tlill, lc_l_,4,+'ilia! w_,Stl_g,eM
vi,,l, lx tll+)l'O ,,tfi<'h+nt i'l'Mill_ t,>,ils t]l;i.n Oll('S Ims,,<l <m 0iichi ;tllfi.iltlata. [11 f;tct,

wt' cl;iilli lhat it is li;il',], if li<,t iilll)O:_sil>h +, tl) _ili<i in<,rl + +,ffM,,lii" ai_/irithins

th;itl illi).'-;i, [)r_'_,+,lif,,<[ ill this p;ll)+,r.

lit <lJiW of I'h_,ir +ff['it'iOil<'V ;ilid iql.g;tnl'l,, l'Iw gOll+,t'ittl,_[ :i]_ot'ilhtii>; ]tav++ a

sl'rifillS _h'il,,vlmck: tht, OXl'l'lilPioll i'l';tt'#' tWe<Is tt) lie visit,.I Imckwiu',ls. This is

;t t'ylJiC;d i)tioil<)nioncin ill _l)'li;uiiic iJro<_raniinitig aigilrithln.,< whMl. taking into
;u*l"fJllllt the <'<)litinfliJllSlV _l+'t'l'_'a._in_pric_, i>f stiJl';igt' ltlOdia, <l<JOTll'i* SI<I'NItO I)e

;t l)i';/cticit] pl'i)lllt,tii if one Want:-, l+tJ_il'M _oner;i.to the t'VOlitS an_l t[wn ;tnalyze
tli¢'lli. ['_1)!,!,*('1.'4;')1+,_,'(+ a<hliit thai" it ran be a crucial issue when (>nowants to analyze

the events n., they are generai,,<l, warning the pr()granuner of errors or pot+,ntial
errors while his/her program is being executed. We were not able to find a

dynamic programnfing <'flgorithni that travels the trace forwards, but we are
confident tha.t it can be done and post it _ a challenge for the interested reader,

mentioning that it would have a great impact on testing methodologies and tools.

[t is worth mentioning here that we did find and iniplement an algorithni that
visits the events in the order they were generated [11], but it is not ,'is efficient

as the dynamic prog-ramming algorithms presented in this paper.
We'd like to warnfly thank Fiance Cleaveland, Dimitra Giannakopou]ou and

Wilhmi Visser fl)r inter,*sting an,{ productive technical discussions directly re-
larecl t¢_ the _'ffol't ill this paper. ,mswell ;_t*Edmund Clarke. David Dill and

D,)r,m Drusinskv for general ,l,scussions on dynamic analysis of programs and
its potei,tial impact on computer aided verification.

2 Finite Trace Linear Temporal Logic

We briefly remind the reader tht_ ba,_ic notions of finite trace linear temporal
logic, including a recursive defiifition of the satisfaction r,-,lation between a finite

trace ,'uM an LTL formula. The interested reader can check [11] for more on this
subject.

We regard a trace as a finite sequence of events emitte, l by the program that

we want to observe. Such events could indicate wh+,n variables are changed or
when locks are acquired or rele_ed. Note that this view is slightly different from
the traditional view where the trace is a sequence of program states, each state
denoting the set of propositions that hold at that state. This vie,,,,' is consistent

with our goal to define an LTL observer as a process that is detached from the

program to be anMyzed, receiving only observed events. To keep the presenta-
tion simple and our results general, we abstract away from the concrete contents

of events and just defitte eveuts as atoms. Similarly, we consider the basic propo-
sitions _ simple as possible, also atoms, and say that a proposition a is satisfied

by ,'ui event b if and only if a = b. In practice, one shouhl necessarily consider

appropriate notions of satish_ction of propositions by events or states generated
by events. We consider that this is an interesting but too concrete problem de-
pending upon the events that one w,'mts to observe, so we do not approach it
here.



Fornmlas..\s>;um,. th;It /)vop is a ..,.) <)1'at,)ms, c;db.,] atontic l)r()lU,siti<)ns.

"['h,'n F,)r't.,,.,.td,Lis tit,, fr<.<,<.xt<.nsi<m <,f Pr+;p un, l,+r tlt+, srandar<l [)roluJsiti,mal

<'oIISt;IIltS;trl+l +)p+,rat<wsIfu< f,+l.+,., -,.. _V .. _A .. _ ---.>_.. +-->+, l'og,,tlu,r v,-ith
tl,,, ,'lassi<':d t<qztiJor;tl logic Op(q';tt(Jl'S o_, []_. O_. and _ l/ _ v:hos,' nwaning
will 1,,, giv<,n lar(.r.

Events and Traces. Sul)pt)se rl,ar Em.z,' is a set of +,vt,nts..\s w(, lm,vit,usly

nt('ntit)m',[+ for the titn+, b('ing, we consider that Even! = Pr_q, is just a set
of at(>tns. Th,' set of finit,, tr;t¢'+,s i.'; Er,,_t" which w(,'ll <h.n<)te Tr,+<'e.where

,_ ,h.m)tes tit<, ompty trace. Y.ssu/ne two pn,'tial fun<'ri(ms hea,t : Tra.,'e -+,

E,,<_<t at),l t)til : Trace -+ Tr, sce for takittg the head an<l th,, tail of a trace,

r<'sp,'ctively, and a total function fen,jib r('turning the length of a finite trace.

That is. head(e t) = e. tml(e t) = t, and lenyth(_ ) = 0 and lenyth(e t) =
1 + length(t ). Assume fiLrther fi)r an5" trace t = etea...ea that 6, fi>r some

natural number I < i < n, denotes the suffix trace e,ei+l...en that starts at
position i, and that tn+t = e: if t = e then n = 0 and tt = e.

Satisfaction. The satisfaction rolation _ C_ Trace × FormMa defines when a

trace t satisfie._ a formula ,:. written t _ ,#. and is defined inductively over
the structure of the formulae <as follows, whero p E Prop is any atomic
proposition anti ,: an<l ,.' are any formulae:

t _ tr,,e is always truo,
t _ fid.+e is always false.

t _p iff t ¢_:an,thead(t) isp.
t I= ,: ',t (A. --+. _) c iff t [=: .; and (or. implies, iff) t I::=t.'.

t _%: iff t eean(t tailCt)_¢..
<DO,# iff (V 1 <i<length(t))t,_¢.

t)::= 04 iff ('q I < i<length(t)+ 1) t, _¢.
tD,:ll c iff (3 I <i<length(t)+l) t,}=g, and

(v 1 <_j < i) tj Dr.

The LTL operators have a slightly different interpretation in the context of finite
traces, though similar in spirit to their standard semantics in classical LTL with
infinite traces. The formula o,: (next ,,:) holds for a finite trace iff the trace is

nonempty anti ,# hohts in the suffix trace starting in the next (the second) time

point. The formula El,# (alw_'s _) holds if _; holds in all time points, while O,:
(eventually _;) holds if _; holds in present or in some future time point. The
formula _ M ¢, (,; until _¢,)holds if ¢' hohls in present or in some future time

point, and until then _: holds. As an example illustrating the semantics, the
formula t2(¢ --+ O_,) holds for a finite trace iff for any time point in the trace it
hohls that if _ is true then eventually g, is true.

The reader probably noticed that i ranges front 1 to length(n) in the definition

of the semantics of t2, while it ranges from 1 to length(n) + 1 in the case of O.
This discrepancy is not a typo; it is because of the intended sem,'mtics of the two

operators on the empty trace, that is, e 1= Cl_ for any formula _0 while e [= <5_
if and only if e I=: _. We stili don't know exactly if this is the most appropriate

semantics of the two operators; it shouhl be taken just ,as a subjective choice at
this incipient stage, but we are certainly going to clarify this issue soon as we



4+,r mor,, practical o×l)+'rierwv v. ith this now t,.cl no ,)gy. J-h_wovvr,the alg<_rirhms

iw.s,,t,t,,,t in this papvr d- n<,t +,ss.ntia.lly <h,pvn, l ou thi_ ch<4ce.

A. imp< wtmtt obs+.rv:it ion which is crucial to tlu, ,hw+4olmWt_t of tlt+. d+yr,antic
lWOgt';mntthx_ g,enerh' algm'ichnts preseltted later Is thitt the rvla.tion _= can lw+

,h,fin.d r+'cursiv+,ly in the cont<'<t of finite traces. Wo only need to consi, l,+r the
ttqllpi_r;d t+[_,,i'ritt i )l-+_:

¢_o,: is false .eli=o,: ifft[_,:,

_ []4 is tl'tlO . ,+t _= Q; life t _ ,: and t _ O;.
:_O,." iff+_,: .et_O¢ iffet_=;ort_O_;.
e_,:ll _'iffe_ t' .e t _,:/t ¢'iffe t _ _',or (,'t _;andt _ ¢ll L').

3 An Example

In this section we show how to generate dynamic programming code for a con-
crete LTL formula. We think that this exantple wouhl practically be sufficient

fur rt,e reader to foresee our general algorithm presented in the next section.
Let Ui[plt q) -_ O{q _ or)) be an LTL formula and let ,_t.,:'2 ..... ¢1o be

its subformulae, in brea<lth-first order:

,:i = O((p l/q) -+ ©(q _ or)),
;2 = (p ll ,l) -+ 0(, 1 --4 or').

,:_ = pll q.
•:t = O(q ---4 or).

Cs =P.

.;6 = q,
+27 = q -+ or,

,:s =q,
.;9 --- or,
7210= r.

Given any finite trace t = ete..,...en of n events, one can recursively define a

matrix s[1..n + 1, i.. 10] of boolean values {0.1 }, with the meaning that s[i, j] = 1
iff t, _ ;j as follows:

s[i,m]= (e, == r)
4i, o] = s[i + 1,to]
s[i, s] = (e+== q)
s[i, 7] = s[i, 8] implies s[i, 9]
s[i,6] = (e, == q)
s[i.s] = (e, == p)
sF,41 = qi, r] o_sfi + 1,41
s[i,31 = s[i,6] or (s[i,5] ands[i + 1,3])
s[i, 2] = s[i, 3] implies s[i, 4]

s[i,t] = s[i,21.,,,+.[i + t, x].

for MI i < n, where and, or, implies are ordinary boolean operations and == is

the equality predicate, where s[n + 1, 1..10] are defined ,as below:



,[,, ,- t, [(Jl -- I)

,,[_,÷ t.91 --o
."I" + l.._] = 0

+, + t. 71 = .+, + t.._1,,,/i,,., s[,, + i, 91
+,[, _- t. 6[ = 0

.,'[,+t.51 =0
J+,+ t. 41 = .+, + t. 71
,[,, .,-t. 31 = .+, + 1.61
,+, -,-t. :21= .+, + i. 31,,,/i,;._.s[,, + [. 4]
.._[, + L. t I = t.

An important observation is that, like in man)" other dynamic programming

algorithms, one <loesn't have to store all the table s[l..n + 1, 1..10], which would
be quite large in practice; in this case, one needs only two lines, s[i, i..10] and

s[i + 1. I..10]. which we'll write now and next from now on, respectively. It is
now only a simple exercise to write up the following algorithm:

INPUT: trace t = ele2...en

,ext[lO] +- O;
l_*'_'t[91 +- O;

ne.rt[5.] ,- O:
ocs't[7] "..---nemt[$1 implies next[91:

next[6] _ 0;
next[5] ,'-- O:
,le.,'t[4! +- next[7];

ne_'t[3] +-- ne.rt[6];
,,e_t{2l_ _e:,,'t[3]impl,es ,,e._t[4]:
nex:t[1] +- I;

for i = n downto 1 do {
howl10] e- (ei == r):

now[9]+- ,,e.rt[lO]:
now[S] +- (e_ == q);
howl7] +-- now[8] implies now[9];
now[6] _ (ei == q);

now[5]_ (e, == p);
noel4]+- .o_{7] o,.ne_[4];
now[3] _ howl6] or (now[5] and next[3]);

now[2] *-- now[3] implies now[4];
no_[l]+--.o,_z] _,_ane_tp];
next _ now }

output(next[i]);

Given a fixed LTL formula, the analysis of this algorithm is straightforward.

Its time complexity is O(n) where n is the length of the input trace, the constant

being given by the size of the LTL formula. The memory required is constant,
since the length of the two arrays is the size of the LTL formula. However, one

may want to also include the size of the formula, say m, into the analysis; then



t]., lira,. <'<mqfl,,xity is ,,l,vi<,,t...iy (-)(.. m) wltil,, th,. m+'nt<,ru r,,<i+tir+,,i is 2 • m

bit+_. Tlw ;ulth<_r_ think that it +`", hard tc_ fin_l .m alg,,,riPhm rmHtih.K l'astvt + th;ut

thq, al,<:.'. + ill lJt';t<'ti¢'Dl Sirll;tti<)its.

4 The Main Algorithm

W. n.w formally .b.s<'rib_. onr algoritl,m that sy,ltlwsiz+,s;t ,l+vnami<' l)rogram-

riling alg()rithul ft'oIll ;tit LTL t'<Jvi'nllla. Ollr synth,,siz+,r is g+,w:+ri<', th,, pot+,utial

us,,r l..ing ,'Xl++',t,,,t r. a,l;q)t it' to his/h,,r ,h,sir,.d t;u':4+,t I;mg, lag,.. Tit,, algorithln

consists of thr+,+, main steps:

Breadth First Search. The LTL formula shotfl<l be first visited in breadth-

first order to &qsign increasing numbers to subformulae _ they are visited.

Let 4t, +:2 ..... ;m be the list of all subformulae in BFS order. Because of the

semantics of finite trace LTL, this step insures us that the truth value of

t, _ ,:) can be completely determined from the truth values of t, _ ._j,

for allj < j' <_ m and the truth values oft,st _ ;j, for all j_< j'_< m.

This recurrence gives the order in which one should generate the code.

Loop Initialization. Before we generate the "for" h)op, we shouhl first ini-

tialize the w,ctor next[1..m], which bKsically gives the truth vahtes of the

sttbformnl;w on tlw +'mpty trace. Actor, ling to the selttazitics of" LTL, one

sholtbl fill the vector next backwards. For a given n+ >_ j > 1. next[j] is
cah'uhtr+,<l a.'< follows:

- If ,Q is a variable then next[j I = 0. Notice that ;,,, is always a variable.

[n a more complex setting of LTL. containing more complex propositions

than just propositional variables, one v¢ould have to evaluate ;j in the

context of the empty trace or of the final state generated by the trace of
eVelltS:

- If.dj is -_:j, for some j < j' _< m, then next[j] = not next[y], where not

is the negation operation on booh,ans (bits):

- Ifcj is ,Q, Op;;_ for somej < jr,j,,. <_ m, then next[j] = next[jtJ op next[j._],

where Op is any propositional operation and op is its corresponding

boolean operation;

- If _j is o_j, then clearly next[j] = 0 according to the semantics of finite

trace LTL;

- If _;j is O_-j, then next[j] = 1 because the empty trace satisfies "always"

everything:

- tf ¢i is o;j, then next[j] = next[f] because there are no further events

that couhl make ;j, hold in the future: it must hold now;

- If _Q is ¢j, It _'_j2 for some j < jt,j2 _< m, then next[j] = next[j._,] for the
same reason as above.

Loop Generation. Because of the dependences in the recursive definition of

finite trace LTL satisfaction relation, one is expected to visit the trace back-

wards, so the loop index will vary from n downto 1. The loop body will

update/calculate the vector now and in the end will move it into the vector

next to serve ,as basis for the next iteration. At a certain iteration i, the

vector now is updated also backwards ,as follows:



- If ¢j is a v:_rial,h, th_,u .,)w[j I ,);_ly ,h'p('uds (,u th,' ,.v(,_lt .,. h_ (),u"

._iml)liti('*l v,.r_<ioll ,)f ffF[.. ,,,,(j] ix I if :rod (rely if ,., = _,.'j. hi ;t m()r(,

c()ml)h,x tiliit,, tr;t(',* LTL wh,'r,, .,:j w:)..; a I)rop()siti(m. ()11(. W,)ltld It(,

('xl)_'('t_'(l t() ('Vl',ltlit_'(' _J in ;_. y;tilt(, ;_¢ lll()ll_,(,nt i.

- If ,.', is --,;/ for s,,m(, j < j' _ ,,. then ,zo,,,[.]] -- o,,t m,,v[j'l:

- [f :, i., ;_, o, ,:_...r,,,.j < j, .j_, £ ,,,. th,.,, ,,,,,,'[Jl= ,,,,,,'_J,l ,,, ,,,,,,'[J.-t.
whor,' ()p is any pr_>l>(,siti(mal (H)_,rztti(m m_d o/) is its ('_)rr,,sl)(m, ling

b()ol('nll oDvr;tti()n;

- If ,.-_ is o,:j, rh,,n now[j) = ,,wt[j'] sine(, ¢./ h()l, ls now if a,,I (rely if ,:_,

h_)ld at tlw previous step (which tr(,ated the next event, the i + 1-th):

- If ,.'j is D,:j, then now[j I = nowlj' ] and nezt[j] because ,_j holds now if

an(1 only if ,:j, hohls now and .,:) hohl at the previous iteration:

- If ,:j is c,;s, then now[j] = now[f] or nezt[j] because of similar re,_ons

as above;

- If ;j is Cj, l/¢j., for some j < jt.j'_, <_ m, then because of the recursion

at the end of Section 2. now[j] = now[j2] o," (nou,tj_] and next[j]).

After each iteration i, ne_:t[1] tells whether the initial LTL formula is validated

193 the trace e,ei+_...e,,. Thor_,fi>re. the desired ou.tp_tt is nezt[1] after the la.st

iteration. Putti,_g all the above together, one can now write up the generic p_eu-

(loeod(, pro:ont_,,l i]_ the al)Pon(lix which can be implemented very efficie, ntly on

any current platform. Since the BFS procedure is linear, the algorithm synthe-

sizes a dynamic programmi,lg algorithm front an LTL formula in linear time

with the r,ize of the fl)rmula
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A Generic Pseudocode for tile Synthesizer

Th,' fi,lh,wing _r,n_,r c progr lit imph,mvnts tit,, t,*ctmiqn,, discus._,d in rh, pap,,r.
It t:tk,s as input ;tit LTL formula awl g_,rwr;m,s a 5>r loop which traw'rs_'s tit,,

traco ,f _,w,t,ts b;wkwar, ls. tiros v;tli, lating or inv;di,l;tting th, 5,rmula.

[xvv-r: LTL fornmla _;

output("INVl' r: trace t -- ele2..._n"):

b.t ,:I. ;'.' ..... _,,, be all th,' snt,formnlao ,ff ,: is BFS or, h.r
for j = m downto l do {

output("next[", j, "1 ,,-- ");

if,zj is a variable then output("0:");

if.,:j = -_:j, then output("not next[".j', "'];");
irxj = ¢._, Op ¢j2 then output("next[",jt, "] op next[", j.,, "];");

if ,:j = o_.,j, then output("O;"):
if ;2 = U.,:j, then output("l:"):

it" ,:2 = _>,:2' then output("next[".j'. "']:'"):
if ;j = _:2, l/_:2_, then output("next[".j.,_, "']:"): }

output("for i = n downto 1 do {"):
for j = m downto 1 do {

output( " now[", j. "'] _ "'):

if ,:2 is a variable then output("(ei ==", _2" "'):"):

if ,:2 = _v'j' then output("not now[".j'. "];"):
if,z2 = XJ, Op ,:j_ then output("now[".jt, "'] op now[", j2. "]:"):

if ,:i = o,:_, then output("next[", j'. "']5):

if ;1 = OXj, then output("now[", j'. "'] and next[", j. "]:" ):

if ,:j = <>,:j, then output("now[", j'. '] or next[", j. "']:'" );
if ,:j = .;_, II ;j.., then output("now[", j..,, "'] or (now[", jr. "] and

next[", j, "']):"): }
output(" next .'-- now: }");

output("output next[l];"):

where Op is any propositional connective and op is its corresponding boolean
operator.

The boolean operations used above are usually very efficiently implemented

on any microprocessor and the vectors of bits next and now are small enough to
be kept in cache. Moreover, the dependencies between instructions in the gener-

ated "for" loop are simple to analyze, so a reasonable compiler can easily unfold
or/and parallelize it to take advantage of machine's resources. Consequently, the

generated code is expected to run very fast.


